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Heterogeneous anisotropic diffusion problems arise in the various areas of science and
engineering including plasma physics, petroleum engineering, and image processing. Stan-
dard numerical methods can produce spurious oscillations when they are used to solve
those problems. A common approach to avoid this difficulty is to design a proper numerical
scheme and/or a proper mesh so that the numerical solution validates the discrete coun-
terpart (DMP) of the maximum principle satisfied by the continuous solution. A well
known mesh condition for the DMP satisfaction by the linear finite element solution of iso-
tropic diffusion problems is the non-obtuse angle condition that requires the dihedral
angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition,
the so-called anisotropic non-obtuse angle condition, is developed for the finite element
solution of heterogeneous anisotropic diffusion problems. The new condition is essentially
the same as the existing one except that the dihedral angles are now measured in a metric
depending on the diffusion matrix of the underlying problem. Several variants of the new
condition are obtained. Based on one of them, two metric tensors for use in anisotropic
mesh generation are developed to account for DMP satisfaction and the combination of
DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the
features of the linear finite element method for anisotropic meshes generated with the
metric tensors.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We are concerned with the numerical solution of the diffusion equation
�r � ðDruÞ ¼ f ; in X ð1Þ
subject to the Dirichlet boundary condition
u ¼ g; on oX ð2Þ
where X � Rd ðd ¼ 1;2; or 3Þ is the physical domain, f and g are given functions, and D ¼ DðxÞ is the diffusion matrix as-
sumed to be symmetric and strictly positive definite on X. The boundary value problem (BVP) (1) and (2) becomes a heter-
ogeneous anisotropic diffusion problem when D changes from place to place (heterogeneous) and its eigenvalues are not all
equal (anisotropic) at least on a portion of X. When a standard numerical method, such as a finite element, a finite difference,
or a finite volume method, is used to solve this problem, spurious oscillations can occur in the computed solution. A chal-
lenge is then to design a proper numerical scheme and/or a proper mesh so that the computed solution is free of spurious
. All rights reserved.
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oscillations. In some applications such as plasma physics, it is further desired that the mesh be aligned with the fast diffusion
direction so that no excessive numerical dissipation is introduced in slow diffusion directions. Moreover, mesh adaptation is
often necessary for improving computational efficiency and accuracy when the physical solution and/or the diffusion matrix
have sharp jumps.

Anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics in fusion
experiments and astrophysics [25–27,55,61,63], petroleum reservoir simulation [1,2,16,22,53], and image processing
[12,13,39,54,57,69]. In plasma physics, magnetized plasmas are constrained to move primarily along magnetic field lines.
Their heat conductivity in the direction parallel to the magnetic field is much higher than those perpendicular to it, and
the ratio of the conduction coefficients can easily exceed 1010 in fusion experiments. The numerical simulation of the heat
conduction of plasmas must not only produce a physically meaningful temperature distribution but also avoid excessive
numerical dissipation in the directions perpendicular to the magnetic field. In petroleum engineering, fluids such as water,
crude oil, and natural gas are stored in reservoir rocks filled by interconnected networks of pores. The diffusion and flow of
those fluids depend crucially on the rocks’ permeability which changes with location and flow direction and has much large
values in horizontal directions than in the vertical direction. Finally, PDE-based anisotropic diffusion filters have been suc-
cessfully used for shape recognition and edge detection in image processing.

The BVP (1) and (2) is a representative example of anisotropic diffusion problems arising in those areas. As typical for
diffusion problems, it satisfies the maximum principle
max
x2X[oX

uðxÞ 6 max 0;max
s2oX

gðsÞ
� �

ð3Þ
provided that f(x) 6 0 holds for all x 2X. The BVP has been studied extensively in the past, and a major effort has been made
to avoid spurious oscillations in the numerical solution. A common strategy is to develop numerical schemes satisfying the
discrete counterpart of (3) – the so-called discrete maximum principle (DMP), which are known to produce numerical solu-
tions free of spurious oscillations [14,68]. The studies can be traced back to early works by Varga [68], Ciarlet [14], Ciarlet and
Raviart [15], and Stoyan [64,65] where a number of sufficient conditions in a general and abstract setting are obtained for a
class of linear elliptic partial differential equations (PDEs). For example, denote by Au = f the linear algebraic system resulting
from the application of a numerical scheme to a linear elliptic PDE supplemented with a Dirichlet boundary condition, where
A is the n � n stiffness matrix, u is the unknown vector, and f the right-hand-side vector. Then, a sufficient condition is given
as follows.

Lemma 1.1 [65]. If the stiffness matrix A satisfies
ðaÞ that A is monotone with Að�Þ being either nonsingular; or singular and irreducible; and ð4Þ
ðbÞ that Að�Þ eðnÞ P 0; ð5Þ
then the numerical scheme satisfies DMP.
Here, matrix A is said to be monotone if A is nonsingular and A�1 P 0 (i.e., all entries of A�1 are non-negative), and A(�) and

e(n) are defined as
að�Þij ¼
aii; for i ¼ j

aij; for i – j; aij 6 0
0; for i – j; aij > 0

8><>: ; eðnÞ ¼
1
..
.

1

264
375: ð6Þ
Note that condition (5) is equivalent to that A(�) has nonnegative row sums. Moreover, A = A(�) and the condition (4) holds
when A is an M-matrix [67]. From Lemma 1.1 we have the following lemma.

Lemma 1.2. If the stiffness matrix A is an M-matrix and has nonnegative row sums, then the numerical scheme satisfies DMP.

Numerical schemes satisfying DMP have been developed along the line of those sufficient conditions by either designing a
proper discretization for the underlying PDE or employing a suitable mesh. To date most success has been made for the iso-
tropic diffusion case where D is in the scalar matrix form, D ¼ aðxÞI, with a(x) being a scalar function; e.g., see [9,10,15,36–
38,44,49,66,71]. In particular, it is shown in [9,15] that the linear finite element method (FEM) satisfies DMP when the mesh
is simplicial and satisfies the so-called non-obtuse angle condition requiring that the dihedral angles of all mesh elements be
non-obtuse. In two dimensions this condition can be replaced by a weaker condition (the Delaunay condition) that the sum
of any pair of angles opposite a common edge is less than or equal to p [49,66]. Similar mesh conditions are developed in
[36–38,44] for elliptic problems with a nonlinear diffusion coefficient in the form D ¼ aðx;u;ruÞI and with mixed boundary
conditions. Burman and Ern [10] propose a nonlinear stabilized Galerkin approximation for the Laplace operator and prove
that it satisfies DMP on arbitrary meshes and for arbitrary space dimension without resorting to the non-obtuse angle
condition.

On the other hand, the anisotropic diffusion case is more difficult and only limited success has been made [16,18,25–
27,43,46–48,50–53,61]. For example, Dra�ga�nescu et al. [18] show that the non-obtuse angle condition fails to guarantee
DMP satisfaction in the anisotropic diffusion case. The techniques proposed by Liska and Shashkov [52] and Kuzmin et al.
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[43] to locally modify (or repair) the underlying numerical scheme, by Sharma and Hammett [61] to employ slope limiters in
the discretization of the PDE, by Mlacnik and Durlofsky [53] to optimize the mesh for a multipoint flux approximation
(MPFA) finite volume method (e.g., see [1,2] for the method), and by Li et al. [50] to optimize a triangular mesh for the finite
element solution, help reduce spurious oscillations. A nonlinear, first order finite volume method developed by Le Potier
[46,47] and further improved by Lipnikov et al. [51] gives rise to a stiffness M-matrix on arbitrary meshes when applied
to parabolic PDEs but fails to satisfy DMP when applied to steady-state elliptic problems. A first order finite difference meth-
od having similar features is proposed by Le Potier [48].

In this paper, we study the linear finite element solution of BVP (1) and (2) with a general diffusion matrix D ¼ DðxÞ. The
objective is threefold. The first is to develop a generalization of the well known non-obtuse angle condition, the so-called
anisotropic non-obtuse angle condition (cf. Eq. (24)), so that the linear FEM satisfies DMP when the mesh is simplicial
and satisfies this condition. The condition requires that the dihedral angles of all mesh elements, measured in a metric
depending on D, be non-obtuse. It reduces to the non-obtuse angle condition for isotropic diffusion matrices. It also
reproduces several existing mesh conditions for homogeneous anisotropic media for which D is a full, constant matrix
(see Remark 2.2). The second objective is to derive a metric tensor for use in mesh generation based on the anisotropic
non-obtuse angle condition. This is done by adopting the so-called M-uniform mesh approach [31] where an anisotropic
mesh is generated as an M-uniform mesh or a uniform mesh in the metric specified by a tensor. M-uniform meshes gener-
ated with the metric tensor satisfy the anisotropic non-obtuse angle condition and are aligned with the diffusion matrix D

(cf. Section 3). The final objective is to combine both mesh adaptivity and DMP satisfaction in the numerical solution of
anisotropic diffusion problems. An optimal metric tensor (see (55)) accounting for both considerations is obtained by min-
imizing an interpolation error bound, and advantages of using adaptive, DMP-bound meshes are demonstrated in numerical
examples. To the authors’ best knowledge, this is the first effort that mesh adaptivity and DMP satisfaction are considered
simultaneously in the numerical solution of anisotropic diffusion problems.

The outline of this paper is as follows. In Section 2, the linear finite element solution of (1) and (2) is described and the
anisotropic non-obtuse angle condition and several variants are derived. Section 3 is devoted to the derivation of the metric
tensor based on the anisotropic non-obtuse angle condition. In Section 4, the combination of mesh adaptation and DMP sat-
isfaction is addressed, and an optimal metric tensor is obtained by minimizing an interpolation error bound. Numerical
examples are presented in Section 5. Finally, Section 6 contains conclusions and comments.

2. Anisotropic non-obtuse angle conditions for linear finite element approximation

Consider the linear finite element solution of BVP (1) and (2). Assume that X is a connected polygon or polyhedron and an
affine family of simplicial triangulations fThg is given thereon. Let
Ug ¼ v 2 H1ðXÞ j vjoX ¼ g
n o

:

Denote by Uh
g � Ug the linear finite element space associated with mesh Th. Then a linear finite element solution ~uh 2 Uh

g to
BVP (1) and (2) is defined by
Z

X
ðrvhÞT Dr~uh dx ¼

Z
X

f vh dx; 8vh 2 Uh
0 ð7Þ
where Uh
0 ¼ Uh

g with g = 0. This equation can be rewritten as
X
K2Th

Z
K
ðrvhÞT Dr~uh dx ¼

X
K2Th

Z
K

f vh dx; 8vh 2 Uh
0: ð8Þ
Generally speaking, the integrals in (8) cannot be carried out analytically, and numerical quadrature is needed. We assume
that a quadrature rule has been chosen on the reference element bK for this purpose,
Z

bK vðnÞdn � bK��� ���Xm

k¼1

ŵkv b̂k

� �
;
Xm

k¼1

ŵk ¼ 1; ð9Þ
where ŵk’s are the weights and b̂k’s the quadrature nodes. A 2D example of such quadrature rules is given by
ŵk ¼ 1

3 ðk ¼ 1;2;3Þ and the barycentric coordinates of the nodes 1
6 ;

1
6 ;

2
3

� �
; 1

6 ;
2
3 ;

1
6

� �
; and 2

3 ;
1
6 ;

1
6

� �
; and a 3D example is

ŵi ¼ 1
4 ði ¼ 1;2;3;4Þ and the barycentric coordinates of the nodes (a,a,a,1 � 3a), (a,a,1 � 3a,a), (a,1 � 3a,a,a), and

(1 � 3a,a,a,a) with a ¼ 5�
ffiffi
5
p

20 ; e.g., see [21].
Let FK be the affine mapping from bK to K such that K ¼ FK

bK� �
, and denote bK

k ¼ FK b̂k

� �
, k = 1, . . .,m. Upon applying (9) to

the integrals in (8) and changing variables, the finite element approximation problem becomes seeking uh 2 Uh
g such that
X

K2Th

jKj
Xm

k¼1

ŵk ðrvhjKÞ
T
DðbK

k ÞruhjK ¼
X

K2Th

jKj
Xm

k¼1

ŵkf ðbK
k ÞvhðbK

k Þ; 8vh 2 Uh
0 ð10Þ
wherervhjK andruhjK denote the restriction ofrvh andruh on K, respectively. Note that we have used in (10) the fact that
rvhjK and ruhjK are constant. Letting
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DK ¼
Xm

k¼1

ŵkDðbK
k Þ; ð11Þ
we can rewrite (10) into
X
K2Th

jKj ðrvhjKÞ
T
DKruhjK ¼

X
K2Th

jKj
Xm

k¼1

ŵkf ðbK
k ÞvhðbK

k Þ; 8vh 2 Uh
0: ð12Þ
We now express (12) in a matrix form. Denote the numbers of the elements, vertices, and interior vertices of Th by N, Nv, and
Nvi, respectively. Assume that the vertices are ordered in such a way that the first Nvi vertices are the interior vertices. Then
Uh

0 and uh can be expressed as
Uh
0 ¼ spanf/1; . . . ;/Nvi

g ð13Þ
and
uh ¼
XNv i

j¼1

uj/j þ
XNv

j¼Nviþ1

uj/j; ð14Þ
where /j is the linear basis function associated with the j-th vertex, aj. Note that the boundary condition (2) can be approx-
imated by
uj ¼ gj � gðajÞ; j ¼ Nvi þ 1; . . . ;Nv : ð15Þ
Substituting (14) into and taking vh = /i (i = 1, . . .,Nvi) in (12) and combining the resulting equations with (15), we obtain the
linear algebraic system
Au ¼ f ; ð16Þ
where
A ¼
A11 A12

0 I


 �
; ð17Þ
I is the identity matrix of size (Nv � Nvi), and
u ¼ ðu1; . . . ;uNv i
;uNviþ1; . . . ;uNv Þ

T
;

f ¼ ðf1; . . . ; fNv i
; gNviþ1; . . . ; gNv Þ

T
:

The entries of the stiffness matrix A and the right-hand-side vector f are given by
aij ¼
X

K2Th

jKj ðr/ijKÞ
T
DK r/jjK ; i ¼ 1; . . . ;Nvi; j ¼ 1; . . . ;Nv ð18Þ

fi ¼
X

K2Th

jKj
Xm

k¼1

ŵkf ðbK
k Þ /iðb

K
k Þ; i ¼ 1; . . . ;Nvi: ð19Þ
We recall that (16) and (17) have been obtained under the Dirichlet boundary condition (2). It is not difficult to show that a
linear system in the same form can be obtained for mixed boundary conditions provided that CD – ;, with CD being the part
of the boundary where the Dirichlet condition is imposed. Therefore, the mesh conditions developed below also work for
mixed boundary conditions with CD – ;.

We now study under what mesh conditions the scheme (16) satisfies DMP. Our basic tool is Lemma 1.2, i.e., we show that
A is an M-matrix and has non-negative row sums when the mesh satisfies the condition (24) below. To this end, we first
introduce some notation. Denote the vertices of K by aK

1 ;a
K
2 ; . . . ;aK

dþ1. The edge matrix of K is defined as
EK ¼ aK
2 � aK

1 ;a
K
3 � aK

1 ; . . . ;aK
dþ1 � aK

1

� 
:

From the definition of simplices, EK is nonsingular [62]. Then, a set of q-vectors (cf. Fig. 1) can be defined as
qK
2 ;q

K
3 ; . . . ;qK

dþ1

� 
¼ E�T

K ; qK
1 ¼ �

Xdþ1

i¼2

qK
i : ð20Þ
This set of vectors has the following properties.

(i) By definition, it follows that
qK
i � ðaK

j � aK
1 Þ ¼ dij;

qK
1 � ðaK

j � aK
i Þ ¼ d1j;

i ¼ 2; . . . ;dþ 1; j ¼ 1; . . . ;dþ 1 ð21Þ
where dij is the Kronecker delta function.



Fig. 1. A sketch of the q vectors for an arbitrary element. The angles sharing the edge connecting vertices a1 and a2 are a and b.
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(ii) Denote by SK
i the face opposite to vertex aK

i (i.e., the face not having aK
i as a vertex). Then (21) implies that qK

i is the
inward normal to the face SK

i ; see Fig. 1.
(iii) The dihedral angle, aij, between any two faces SK

i and SK
j (i – j) is defined as the supplement of the angle between the

inward normals to the faces. It can be calculated by
cosðaijÞ ¼ �
qK

i � qK
j

kqK
i kkqK

j k
; i – j: ð22Þ
(iv) It is known [8,44] that, for any vertex of K with the global and local indices i and iK, respectively, there holds
r/ijK ¼ qK
iK
: ð23Þ
The main result of this section is stated in the following theorem.

Theorem 2.1. If the mesh satisfies the anisotropic non-obtuse angle condition
qK
i

� �T
DK qK

j 6 0; 8 i – j; i; j ¼ 1;2; . . . ;dþ 1; 8 K 2Th ð24Þ
then the linear finite element scheme (12) for solving BVP (1) and (2) satisfies DMP.
Proof. We prove this theorem using Lemma 1.2. That is, we show that the stiffness matrix A has non-negative row sums and
is an M-matrix when the mesh satisfies condition (24).

(i) We first show that A has non-negative row sums. From (17) we only need to show
PNv

j¼1aij P 0 for i = 1, . . .,Nvi. From
(18) we have
XNv

j¼1

aij ¼
XNv

j¼1

X
K2Th

jKj ðr/ijKÞ
T
DKr/jjK ¼

X
K2Th

jKj ðr/ijKÞ
T
DKr

XNv

j¼1

/j

 !�����
K

¼ 0; ð25Þ
where we have used the fact that
PNv

j¼1/jðxÞ � 1 for any x 2 K.
(ii) Next we show that
aij 6 0; 8 i – j; i; j ¼ 1; . . . ;Nv ð26Þ
aii P 0; 8 i ¼ 1; . . . ;Nv : ð27Þ
Let xi (or xj) be the patch of the elements containing ai (or aj) as a vertex. Notice thatr/ijK = 0 when K R xi. Denote the local
indices of vertices ai and aj on K by iK and jK, respectively. Then from (18), (23), and (24), we have, for i – j, i = 1, . . .,Nvi,
j = 1, . . .,Nv,
aij ¼
X

K2xi\xj

jKj ðr/ijKÞ
T
DKr/jjK

¼
X

K2xi\xj

jKjðqK
iK
ÞT DK qK

jK
ð28Þ

6 0: ð29Þ
From (17) it is obvious that aij = 0 for i – j, i = Nvi + 1, . . .,Nv, j = 1, . . .,Nv. Hence, the off-diagonal entries of A are non-positive.
The inequality (27) follows immediately from (17) and (18), and the positive definiteness of DK .



X. Li, W. Huang / Journal of Computational Physics 229 (2010) 8072–8094 8077
(iii) We now show that A11 defined in (17) is an M-matrix. Notice that the non-negativeness of the row sums of A and the
properties (26) and (27) imply that A11 is diagonally dominant. In theory, we can show that A11 is an M-matrix by
proving it is irreducible [67]. However, we will need to assume that any pair of interior vertices is connected at least
by an interior edge path [18]. To avoid this additional restriction on the mesh, we instead opt to show A11 is symmetric
and positive definite, which together with (26) and (27) implies that A11 is an M-matrix [67].

From (18) it is obvious that A11 is symmetric. It suffices to show A11 is positive definite. From the strictly positive definite-
ness of the diffusion matrix D, there exists a positive constant b such that
DK P bI; 8 K 2Th:
For any vector v ¼ ðv1; . . . ;vNvi
ÞT , we define vh ¼

PNvi
i¼1v i/i 2 Uh

0. From the definition of A11 and the fact thatrvhjK is constant
on K, we have
vT A11v ¼
X

K2Th

jKj ðrvhjKÞ
T
DKrvhjK

P b
X

K2Th

jKj ðrvhjKÞ
TrvhjK

¼ b
X

K2Th

Z
K
ðrvhÞTrvh dx

¼ b
Z

X
ðrvhÞTrvh dx

P bCp

Z
X
jvhj2dx;
where in the last step we have used Poincare’s inequality and Cp > 0 is the associated constant. For any nonzero vector v,
vh ¼

PNvi
i¼1v i/i X 0 and is piecewise linear and continuous on X. Consequently,
vT A11v P bCp

Z
X
jvhj2dx > 0; 8v – 0
which implies that A11 is positive definite. Hence, A11 is an M-matrix.
(iv) From (17) it is easy to verify that the inverse of A is given by
A�1 ¼ A�1
11 �A�1

11 A12

0 I

" #
:

Then (26) and the fact A�1
11 P 0 imply that A�1 P 0 and therefore A is an M-matrix.
We have shown above that A is an M-matrix and has non-negative row sums. By Lemma 1.2 we conclude that the linear
FEM satisfies DMP when the simplicial mesh satisfies (24). h
Remrk 2.1. For the isotropic case where D ¼ aðxÞI for some scalar function a(x), condition (24) reduces to the well known
non-obtuse angle condition [8,15]
qK
i � qK

j 6 0; 8 i – j; 8 K 2Th; ð30Þ
which requires the dihedral angles aij (cf. (22)) of all mesh elements be non-obtuse. Thus, condition (24) is a generalization of
the non-obtuse angle condition. An alternative interpretation of (24) is that the dihedral angles of element K, measured in
the Riemannian metric DK (piecewise constant), are non-obtuse.
Remrk 2.2. It is interesting to point out that an explicit mesh condition similar to (24) is obtained by Eigestad et al. [20] for a
multipoint flux approximation (MPFA) finite volume method on triangular meshes for anisotropic homogeneous media (i.e.,
D is constant). Moreover, (24) reduces to a mesh condition obtained by Li et al. [50] for a similar situation with constant D

and triangular meshes. To see this, let the eigen-decomposition of the constant diffusion matrix D be
D ¼
cos h � sin h

sin h cos h


 �
k1 0
0 k2


 �
cos h sin h

� sin h cos h


 �
: ð31Þ
For an arbitrary triangular element K, denote the angles sharing the edge connecting vertices a1 and a2 by a and b; see Fig. 1.
Then, a mesh condition of [50] is given by
�k1 sin b sin aþ k2 cos b cos a 6 0;
�k2 cos b 6 0;
�k2 cos a 6 0;

8><>: ð32Þ
provided that the edge connecting a1 and a2 is parallel to the primary diffusion direction (cos h, sinh)T (the eigenvector cor-
responding to the first eigenvalue of D; k1). We now show that (24) reduces to (32) for the current situation. Without loss of
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generality we assume that the primary diffusion direction and the edge connecting a1 and a2 are in the direction of the x-
axis; cf. Fig. 1. (In this case, we have h = 0.) It is not difficult to obtain
q1 ¼ c1
� sin b

� cos b


 �
; q2 ¼ c2

sin a
� cos a


 �
; q3 ¼ c3

0
1


 �
;

where c1, c2, and c3 are positive constants. From these and (31), (24) reduces to
qT
1DK q2 ¼ qT

1Dq2 ¼ c1c2ð�k1 sin a sin bþ k2 cos a cos bÞ 6 0;
qT

1DK q3 ¼ qT
1Dq3 ¼ c1c3ð�k2 cos bÞ 6 0;

qT
2DK q3 ¼ qT

2Dq3 ¼ c2c3ð�k2 cos aÞ 6 0;

8><>:

which gives (32).

It is often more convenient to express the anisotropic non-obtuse angle condition (24) in terms of mapping FK from bK to K.
Denote the Jacobian matrix of FK by F 0K . We define the vectors q̂k; k ¼ 1; . . . ; dþ 1 for the reference element bK as in (20). The
chain rule of differentiation implies
r/i ¼ ðF 0KÞ
�Trn/̂i;
where /̂iðnÞ ¼ /iðFKðnÞÞ. From (23), we have
qi ¼ ðF
0
KÞ
�T q̂i:
Inserting this into (24) we obtain the following theorem.

Theorem 2.2. If the mesh satisfies
q̂T
i ðF

0
KÞ
�1

DKðF 0KÞ
�T q̂j 6 0; 8 i – j; i; j ¼ 1; . . . ; dþ 1; 8 K 2Th ð33Þ
then the linear finite element scheme (12) for solving BVP (1) and (2) satisfies DMP.
Corollary 2.1. Suppose that the reference element bK is taken as a simplex with non-obtuse dihedral angles. If the mesh satisfies
ðF 0KÞ
�1

DKðF 0KÞ
�T ¼ CK I; 8 K 2Th ð34Þ
where CK is a positive constant on K and I is the d � d identity matrix, then the linear finite element scheme (12) for solving BVP (1)
and (2) satisfies DMP.
Proof. Since bK is a simplex with non-obtuse dihedral angles, we have
q̂T
i q̂j 6 0; i – j; i; j ¼ 1; . . . ; dþ 1:
From this it is easy to see that (34) is sufficient for (33) to hold. h

In the next two sections, mesh condition (34) will be used to develop metric tensors accounting for DMP satisfaction and
mesh adaptivity. These metric tensors are needed in anisotropic mesh generation. It is emphasized that (34), as well as mesh
conditions (24) and (33), can also be used more directly via direct minimization [50,53] or variational formulation [30] for
optimizing the current mesh to improve DMP satisfaction.

3. Anisotropic mesh generation: metric tensor based on DMP satisfaction

In this section, we develop a metric tensor for use in anisotropic mesh generation based on mesh condition (34). To this
end, we adopt the so-called M-uniform mesh approach [31,32] where an anisotropic mesh is viewed as an M-uniform mesh
or a uniform one in the metric specified by a tensor M = M(x). The tensor, chosen to be symmetric and positive definite, pro-
vides the information on the size, shape, and orientation of mesh elements over X necessary for the actual implementation
of mesh generation. Various formulations of the metric tensor have been developed in the past for anisotropic mesh adap-
tation; e.g., see [4,11,23,31,33]. Once a metric tensor has been determined, the corresponding anisotropic meshes can be gen-
erated using a variety of techniques including blue refinement [42,45], directional refinement [58,59], Delaunay-type
triangulation [4,5,11,56], front advancing [24], bubble packing [72], local refinement and modification [3,6,17,28,60], and
variational mesh generation [7,19,30,35,41,40,70]. In this paper, we restrict our attention to the determination of a metric
tensor for DMP satisfaction, and refer the interested reader to the above-mentioned references for meshing strategies.

It is shown in [32] that when the reference element bK is taken to be equilateral and unitary in volume, a simplicial M-
uniform mesh Th for a given M = M(x) satisfies
qK jKj ¼
rh

N
; 8 K 2Th ð35Þ

1
d

tr ðF 0KÞ
T MK F 0K

� �
¼ det ðF 0KÞ

T MK F 0K
� �1

d
; 8 K 2Th ð36Þ
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where N is the number of mesh elements, FK is the affine mapping from bK to K, F 0K is the Jacobian matrix of FK, and
MK ¼
1
jKj

Z
K

MðxÞdx; qK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

q
; rh ¼

X
K2Th

qK jKj: ð37Þ
Condition (35), referred to as the equidistribution condition, determines the size of K from qK. The larger qK is, the smaller jKj
is. On the other hand, (36), called the alignment condition, characterizes the shape and orientation of K in the sense that the
principal axes of the circumscribed ellipsoid of K are parallel to the eigenvectors of MK while their lengths are reciprocally
proportional to the square roots of the respective eigenvalues [32].

To determine M from mesh condition (34), we first notice that the left and right sides of (36) represents the arith-
metic and geometric means of the eigenvalues of matrix ðF 0KÞ

T MK F 0K , respectively. From the arithmetic-mean geometric-
mean inequality, (36) implies that all of the eigenvalues are equal to each other. In other words, ðF 0KÞ

T MK F 0K is a scalar
matrix, i.e.,
ðF 0KÞ
T MK F 0K ¼ eCK I or ðF 0KÞ

�1M�1
K ðF

0
KÞ
�T ¼ eC�1

K I ð38Þ
for some constant eCK . A direct comparison of (38) with (34) suggests that the metric tensor M be chosen in the form
MDMP;K ¼ hKD�1
K ; 8 K 2Th ð39Þ
where h = hK > 0 is an arbitrary piecewise constant function. Thus, any M-uniform mesh associated with a metric tensor in the
form (39) satisfies condition (34). The following theorem follows from Corollary 2.1.

Theorem 3.1. Suppose that the reference element bK is taken to be equilateral and unitary in volume. For an M-uniform mesh
associated with any metric tensor in the form (39), the linear finite element scheme (12) for solving BVP (1) and (2) satisfies DMP.
Remrk 3.1. Since an M-uniform mesh is aligned with the metric tensor M as characterized by the alignment condition (36),
we can conclude that when M is chosen in the form (39), a corresponding M-uniform mesh is aligned with the diffusion
matrix D in the sense that the principal axes of the circumscribed ellipsoid of element K are parallel to the eigenvectors
of DK while their lengths are proportional to the square roots of the respective eigenvalues. As a consequence, the length
of K is greater in a faster diffusion direction and smaller in a slower diffusion direction. A small length scale of mesh elements
in slow diffusion directions helps reduce numerical dissipation in those directions.
Remrk 3.2. Note that h = hK in (39) is arbitrary. Thus, in addition to satisfying DMP, there is a degree of freedom for the mesh
to account for other considerations. In the next section, we shall consider mesh adaptation and choose hK to minimize a cer-
tain error bound.
4. Metric tensors based on DMP satisfaction and mesh adaptivity

In this section, we develop a metric tensor taking both the satisfaction of DMP and mesh adaptivity into consideration.
The metric tensor takes the form (39), with the scalar function h = hK being determined to minimize an interpolation error
bound. For simplicity, we consider here an error bound for linear Lagrange interpolation. Other interpolation error bounds
(e.g., see [32]) can be considered without major modification.

Lemma 4.1 [32]. Let K � Rd be a simplicial element and Ph be the linear Lagrange interpolation operator. Then,
jv �PhvjH1ðKÞ 6 CkðF 0KÞ
�1k

Z
K

tr ðF 0KÞ
T jHðvÞjF 0K

� �h i2
dx


 �1
2

; 8v 2 H2ðKÞ ð40Þffiffiffiffiffiffiffiffiffiffiffiffiffiq

where k � k denotes the l2 matrix norm, H(v) is the Hessian of v, and jHðvÞj ¼ HðvÞ2.
Lemma 4.2. For any given d � d symmetric matrix S, there holds that
jtrðAT SAÞj 6 trðAT AÞ kSk; 8 A 2 Rd�d: ð41Þ
If S is further positive definite, then
kSk�1 trðAT SAÞ 6 trðAT AÞ 6 trðAT SAÞ kS�1k: ð42Þ
Proof. Denote the eigen-decomposition of S by
S ¼ QRQ T ;
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where Q is an orthogonal matrix, R = diag(k1, . . .,kd), and ki, i = 1, . . .,d are the eigenvalues of S. Write
AT Q ¼ ½v1; . . . ;vd�:
Then
AT SA ¼ ðAT QÞRðQ T AÞ ¼ ½v1; . . . ;vd�R½v1; . . . ;vd�T ¼
X

i

kiv ivT
i :
It follows that
jtrðAT SAÞj ¼ j
X

i

kitrðv ivT
i Þj ¼ j

X
i

kikv ik2j 6
X

i

kv ik2 � jkjmax ¼ trðAT AÞkSk;
which gives (41). Inequality (42) follows from (41) and that
trðAT AÞ ¼ trðAT S
1
2S�1S

1
2AÞ 6 trðAT SAÞ S�1

��� ���: � ð43Þ

The scalar function h = hK in (39) is determined based on interpolation error bound (40). From the definition of the Frobe-

nius matrix norm, we have
kAk 6 kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAT AÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAATÞ

q
; 8A 2 Rd�d:
Using this, taking squares of both sides of (40), and summing the result over all elements of Th, we have
ju�Phuj2H1ðXÞ ¼
X

K2Th

ju�Phuj2H1ðKÞ

6 C
X

K2Th

kðF 0KÞ
�1k2

Z
K

tr ðF 0KÞ
T jHðuÞjF 0K

� �h i2
dx 6 C

X
K2Th

kðF 0KÞ
�1k2

F

Z
K

tr ðF 0KÞ
T jHðuÞjF 0K

� �h i2
dx

¼ C
X

K2Th

tr ðF 0KÞ
�1ðF 0KÞ

�T
� �h i Z

K
tr ðF 0KÞ

T jHðuÞjF 0K
� �h i2

dx:
From Lemma 4.2 it follows that
ju�Phuj2H1ðXÞ 6 C
X

K2Th

tr F 0K
� ��1

DKðF 0KÞ
�T

� �h i
� kD�1

K k �
Z

K
tr ðF 0KÞ

T
D�1

K F 0K
� �� �h i2

kDK jHðuÞjk2 dx

¼ C
X

K2Th

jKj � tr F 0K
� ��1

DK F 0K
� ��T

� �h i
� tr F 0K

� �T
D�1

K F 0K
� �� �h i2

� kD�1
K k �

1
jKj

Z
K
kDK jHðuÞjk2 dx: ð44Þ
Consider an M-uniform mesh Th corresponding to a metric tensor MK in the form (39). Then, alignment condition (36) re-
duces to
1
d

tr F 0K
� �T

D�1
K F 0K

� �
¼ det F 0K

� �T
D�1

K F 0K
� �1

d
: ð45Þ
From the arithmetic-mean geometric-mean inequality, (45) implies that all of the eigenvalues of matrix F 0K
� �T

D�1
K F 0K are

equal to each other. As a consequence, all of the eigenvalues of the inverse of ðF 0KÞ
T
D�1

K F 0K are equal to each other, which
in turn implies
1
d

tr F 0K
� ��1

DK F 0K
� ��T

� �
¼ det F 0K

� ��1
DK F 0K
� ��T

� �1
d
: ð46Þ
Inserting (45) and (46) into (44) and noticing
det F 0K
� �T

D�1
K F 0K

� �
¼ jKj2 detðDKÞ�1

; det F 0K
� ��1

DK F 0K
� ��T

� �
¼ jKj�2 det DKð Þ;
we have
ju�Phuj2H1ðXÞ 6 C
X

K2Th

jKj
dþ2

d det DKð Þ�
1
dkD�1

K k �
1
jKj

Z
K
kDK jHðuÞjk2 dx: ð47Þ
Rewrite this bound as
ju�Phuj2H1ðXÞ 6 C
X

K2Th

jKj
dþ2

d BK ; ð48Þ
where
BK ¼ detðDKÞ�
1
dkD�1

K k �
1
jKj

Z
K
kDK jHðuÞjk2 dx: ð49Þ
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Notice that
R

K kDK jHðuÞjk2 dx and therefore BK can vanish locally. To ensure the positive definiteness of the metric tensor to
be defined, we regularize the above bound with a parameter ah > 0 as
ju�Phuj2H1ðXÞ 6 C
X

K2Th

jKj
dþ2

d ½ah þ BK � ¼ Cah

X
K2Th

jKj
dþ2

d 1þ 1
ah

BK


 �
: ð50Þ
From Hölder’s inequality, we have
X
K2Th

jKj
dþ2

d 1þ 1
ah

BK


 �
¼
X

K2Th

jKj 1þ 1
ah

BK


 � d
dþ2

 !dþ2
d

P N�
2
d

X
K2Th

jKj 1þ 1
ah

BK


 � d
dþ2

 !dþ2
d

; ð51Þ
with equality in the last step if and only if
jKj 1þ 1
ah

BK


 � d
dþ2

¼ constant; 8 K 2Th: ð52Þ
A direct comparison of this with equidistribution condition (35) suggests that the optimal qK be defined as
qK ¼ 1þ 1
ah

BK


 � d
dþ2

: ð53Þ
From the relation qK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMKÞ

p
, we find the optimal hK and MK as
hK ¼ q
2
d
K detðDKÞ

1
d ¼ 1þ 1

ah
BK


 � 2
dþ2

detðDKÞ
1
d; ð54Þ

MDMPþadap;K ¼ 1þ 1
ah

BK


 � 2
dþ2

detðDKÞ
1
dD�1

K ; ð55Þ
where BK is defined in (49). With the so-defined metric tensor, the error bound can be obtained from (50) and (51) for a cor-
responding M-uniform mesh as
ju�PhujH1ðXÞ 6 CN�
1
d
ffiffiffiffiffi
ah
p

r
dþ2
2d

h : ð56Þ
To complete the definition, we need to determine the regularization parameter ah. We follow [31] to define ah such that
rh �
X

K2Th

qK jKj 6 2jXj; ð57Þ
with which roughly 50% of the mesh points are concentrated in regions of large qK. From (53) and Jensen’s inequality, we
have
rh ¼
X

K2Th

jKj 1þ 1
ah

BK


 � d
dþ2

6

X
K2Th

jKj 1þ a
� d

dþ2
h B

d
dþ2
K


 �
¼ jXj þ a

� d
dþ2

h

X
K2Th

jKjB
d

dþ2
K : ð58Þ
By requiring the above bound to be less than or equal to 2jXj, we obtain
ah ¼
1
jXj

X
K2Th

jKjB
d

dþ2
K

 !dþ2
d

: ð59Þ
Combining (56) with (57) and (59) and summarizing the above derivation, we have the following theorem.

Theorem 4.1. Suppose that the reference element bK is chosen to be equilateral and unitary in volume. For any M-uniform
simplicial mesh corresponding to the metric tensor (55), the linear finite element scheme (12) for solving BVP (1) and (2) satisfies
DMP and the interpolation error for the exact solution u is bounded by
ju�PhujH1ðXÞ 6 CN�
1
d
X

K2Th

jKjB
d

dþ2
K

 !dþ2
2d

; ð60Þ
where BK is defined in (49).
It is remarked that the metric tensor (55) (cf. (49)) depends on the second derivatives of the exact solution u which is

what we are seeking/approximating. In actual computation, the second derivatives are replaced with approximations ob-
tained with a Hessian recovery technique such as the one of using piecewise quadratic polynomials fitting in least-squares
sense to nodal values of the computed solution (e.g., see [31]). A hierarchical basis error estimator can also be used to
approximate the Hessian of the exact solution. It is shown in [34] that the least-squares fitting and the hierarchical basis
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methods perform comparably for all considered cases except for one where the diffusion coefficient is discontinuous and the
interfaces are predefined in the mesh. In this case, the latter works better than the former since hierarchical basis estimation
does not over-concentrate mesh elements near the interfaces. Since our main goal is to study DMP satisfaction instead of the
discontinuity of the diffusion coefficient, we choose to use the least squares fitting method for Hessian recovery in our com-
putation due to its simplicity and problem independent feature.

It is interesting to note that the term in the bracket in (60) can be viewed as a Riemann sum of an integral, i.e.,
X
K2Th

jKjB
d

dþ2
K 	

Z
X

detðDÞ�
1

dþ2kD�1k
d

dþ2 � kDjHðuÞjk
2d

dþ2dx:
Thus, the interpolation error has an asymptotic bound as
ju�PhujH1ðXÞ 6 CN�
1
d
X

K2Th

jKjB
d

dþ2
K

 !dþ2
2d

	 CN�
1
d

Z
X

detðDÞ�
1

dþ2kD�1k
d

dþ2 � kDjHðuÞjk
2d

dþ2dx
� �dþ2

2d

: ð61Þ
Fig. 2. An iterative procedure for adaptive mesh solution of PDEs.

Fig. 3. The physical domain and boundary conditions for Example 5.1.
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Fig. 4. Example 5.1 with constant D. Finite element solutions obtained with (a) Munif and (b) MDMP+adap.
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We emphasize that both the satisfaction of DMP and mesh adaptation (through minimization of an error bound) are taken
into account in the definition of metric tensor (55). An interesting question is what the interpolation error bound looks
like if mesh adaptation is not taken into consideration. For example, we consider a case hK = 1 in (39). This gives the metric
tensor
MK ¼ D�1
K : ð62Þ
Recall that the interpolation error is bounded in (48), i.e.,
ju�PhujH1ðXÞ 6 C
X

K2Th

jKj
dþ2

d BK

 !1
2

; ð63Þ
where BK is defined in (49). Moreover, for an M-uniform mesh corresponding to this metric tensor the equidistribution con-
dition (35) reduces to
detðDKÞ�
1
2jKj ¼ rh

N
; ð64Þ
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Fig. 5. Example 5.1 with constant D. Meshes obtained with different metric tensors.



−0
.05

−0.05

−0
.05

−0
.05

−0
.03

−0
.03

−0
.03

−0.03

−0
.0
3

−0.
03
−0
.03

−0
.01

−0.
01

−0.01

−0
.01

−0
.01

−0
.01

−0.
01

−0
.01

−0.
01

−0
.01

−0
.00
3

−0.0
03

−0
.0
03

−0
.00
1

−0.
001

−0
.00
1

−0
.00
1

−0
.0
01

−0
.00
1

−0.00
1

−0.
001

−0
.00
1

Fig. 6. Example 5.1 with constant D. Contours of the finite element solutions obtained with different metric tensors.
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where rh ¼
P

K2Th
detðDKÞ�

1
2jKj. Inserting (64) into (63), we have
ju�PhujH1ðXÞ 6 C
X

K2Th

jKj detðDKÞ
1
2
rh

N

� �2
d
BK

 !1
2

¼ CN�
1
dr

1
d
h

X
K2Th

jKjdetðDKÞ
1
dBK

 !1
2

¼ CN�
1
d
X

K2Th

detðDKÞ�
1
2jKj

 !1
d X

K2Th

jKjdetðDKÞ
1
dBK

 !1
2

:

Thus,
ju�PhujH1ðXÞ 6 CN�
1
d
X

K2Th

detðDKÞ�
1
2jKj

 !1
d X

K2Th

jKjdetðDKÞ
1
dBK

 !1
2

ð65Þ

	 CN�
1
d

Z
X

detðDÞ�
1
2dx

� �1
d
Z

X
kD�1k � kDjHðuÞjk2 dx

� �1
2

: ð66Þ
This is the interpolation error bound for an M-uniform mesh corresponding to metric tensor (62).
From Hölder’s inequality, it follows that
X
K2Th

jKjB
d

dþ2
K

 !dþ2
2d

6

X
K2Th

detðDKÞ�
1
2jKj

 !1
d X

K2Th

jKjdetðDKÞ
1
dBK

 !1
2

:

Thus, the solution-dependent factor of bound (60) is smaller than or equal to that of bound (65). In this sense, MDMP+adap

defined in (55) leads to a more accurate interpolant than MDMP defined in (62) (or (39) with hK = 1).
Moreover, from the standard interpolation theory we recall that the interpolation error for a uniform mesh is bounded by
ju�PhujH1ðXÞ 6 CN�
1
d

Z
X
kr2uk2dx

� �1
2

: ð67Þ
It is easy to see that the solution dependent factor in error bound (61) for MDMP+adap is in the order of jr2uj
L

2d
dþ2ðXÞ

and those in

(66) for MDMP and (67) for a uniform mesh are in the order of jr2ujL2ðXÞ. Thus, (61) has the smallest solution dependent factor,
an indication of the advantage of using adaptive meshes. On the other hand, the error bounds (61) and (66) depend on the
determinant and norm of the diffusion matrix D and its inverse. This indicates that DMP satisfaction may sacrifice accuracy.
Indeed, as we shall see in the next section, the solution error for DMP-bound meshes can sometimes be larger than that for a
uniform mesh.
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Fig. 8. Example 5.1 with variable D. Finite element solutions obtained with (a) Munif and (b) MDMP+adap.
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5. Numerical results

In this section, we present three two-dimensional examples to demonstrate the performance of metric tensors MDMP in
(39) with hK = 1 based on DMP satisfaction and MDMP+adap in (55) combining DMP satisfaction and mesh adaptivity. For
comparison purpose, we also include numerical results obtained with almost uniform meshes (labelled with Munif) and with
a metric tensor Madap based on minimization of a bound on the H1 semi-norm of linear interpolation error [31]:
Madap;K ¼ q
2
d
K det I þ 1

ah
jHKðuÞj

� ��1
d

I þ 1
ah
jHKðuÞj


 �
; ð68Þ
where
qK ¼ I þ 1
ah
jHKðuÞj

���� ���� d
dþ2

F

det I þ 1
ah
jHKðuÞj

� � 1
dþ2

;

and ah is defined implicitly through
X
K2Th

jKjqK ¼ 2jXj:
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Fig. 9. Example 5.1 with variable D. Meshes obtained from different metric tensors.
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Once again, the second derivatives of the exact solution are replaced in actual computation with approximations obtained
with a Hessian recovery technique (using piecewise quadratic polynomials fitting in least-squares sense to nodal values of
the computed solution [31]).

An iterative procedure for solving PDEs is shown in Fig. 2. In the current computation, each run is stopped after 10 iter-
ations. We have found that there is very little improvement in the computed solution after 10 iterations for all the examples
considered. A new mesh is generated using the computer code BAMG (bidimensional anisotropic mesh generator) developed
by Hecht [29] based on a Delaunay-type triangulation method [11]. The code allows the user to supply his/her own metric
tensor defined on a background mesh. In our computation, the background mesh has been taken as the most recent mesh
available.

Example 5.1. The first example is to consider BVP (1) and (2) with
f � 0; X ¼ ½0;1�2 n 4
9
;
5
9


 �2

; g ¼ 0 on Cout; g ¼ 2 on Cin;
where Cout and Cin are the outer and inner boundaries of X, respectively; see Fig. 3. The diffusion matrix is given by (31) with
k1 = 1000, k2 = 1, and h being the angle of the primary diffusion direction (parallel to the first eigenvector of D).

This example satisfies the maximum principle and the solution (whose analytical expression is unavailable) stays
between 0 and 2. Our goal is to produce a numerical solution which also satisfies DMP and stays between 0 and 2. Moreover,
for both cases with a constant and a variable h we consider, the exact solution has sharp jumps near the inner boundary (cf.
Figs. 4 and 8) so mesh adaptation is needed for a proper resolution of them. This example has been studied in [43,50].
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Fig. 10. Example 5.1 with variable D. Contours of the finite element solutions obtained with different metric tensors.
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Fig. 11. Example 5.2. Finite element solutions obtained with (a) Madap and (b) MDMP+adap.
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We first consider the case of constant D with h = p/4. Fig. 4 shows finite element solutions obtained with Munif and
MDMP+adap. Meshes and solution contours obtained with various metric tensors are shown in Figs. 5 and 6, respectively. No
overshoots in the finite element solutions are observed for all cases. However, undershoots and unphysical minima occur in
the solutions obtained with Munif (umin = �0.0602) and Madap (umin = �0.0039) (cf. Fig. 6)(a) and (b)). Fig. 7 shows the decrease
of �umin as the mesh is refined. For the range of the number of mesh elements considered, the undershooting improves at a
rate of �umin = O(N�0.5) for both Munif and Madap. On the other hand, the results confirm the theoretical prediction that the
solutions obtained with MDMP and MDMP+adap satisfy DMP and no overshoot/undershoot and no unphysical extremum occur.
It should be pointed out that the solution contour obtained with an almost uniform mesh is very smooth but the sharp jumps
of the solution are smeared; see Figs. 4 and 6(a). The solution contours obtained with MDMP and MDMP+adap are comparable to
the one obtained with Madap.

Next we consider a case of variable D with h = psin(x)cos(y). The finite element solutions, meshes, and solution contours
are shown in Figs. 8–10, respectively. Similar observations as for the constant D case can be made. Especially, undershoots
and unphysical extrema occur in the solutions obtained with Munif and Madap but not with MDMP and MDMP+adap. Once again,
the results confirm our theoretical predictions in the previous sections.
Example 5.2. In this example, we consider BVP (1) and (2) with
f � 0; gðx;0Þ ¼ gð16; yÞ ¼ 0;

gð0; yÞ ¼
0:5y if 0 6 y < 2;
1 if 2 6 y 6 16;

�
and gðx;16Þ ¼

1 if 0 6 x 6 14;
8� 0:5x if 14 < x 6 16:

�

The diffusion matrix is defined as
Dðx; yÞ ¼
500:5 499:5
499:5 500:5

� �
:

This is a simple example with a constant but anisotropic D and with a continuous boundary condition. It satisfies the max-
imum principle and its solution stays between 0 and 1.

Numerical solutions, meshes, and solution contours are shown in Figs. 11–13, respectively. For this example, both
undershoots and overshoots are observed in the computed solutions with Munif and Madap but not with with MDMP and
MDMP+adap. This example demonstrates that a scheme violating DMP can produce unphysical extrema even for a simple
problem with constant diffusion, continuous boundary conditions, and a convex domain.
Example 5.3. This example is given by (1) and (2) with
X ¼ ð0;1Þ � ð0;1Þ; f ðx; yÞ ¼
4:0; if x < 0:5
�5:6; if x > 0:5

�
; u ¼ uexact on oX;

Dðx; yÞ ¼
D1; if x < 0:5;
D2; if x > 0:5;

�
D1 ¼

1 0
0 1

� �
; D2 ¼

10 3
3 1

� �
:
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The problem has the exact solution
uðx; yÞ ¼ 1� 2y2 þ 4xyþ 2yþ 6x; if x 6 0:5
�2y2 þ 1:6xy� 0:6xþ 3:2yþ 4:3; if x > 0:5:

(
ð69Þ
Note that the value and primary diffusion direction of the diffusion matrix change across the line x = 0.5. This example has
been studied in [43].

Solutions and meshes obtained with various metric tensors are shown in Fig. 14. For this example, no overshoots and
undershoots are observed for all numerical solutions. The meshes obtained with MDMP and MDMP+adap show a better
alignment with the primary diffusion direction than that obtained with Madap. Moreover, elements are concentrated along
the line x = 0.5 for the meshes obtained with Madap and MDMP+adap whereas there is no concentration in the mesh shown in
Fig. 14(d) for MDMP. The results are consistent with what is expected from the construction of the metric tensors.

The exact solution is available for this example. The H1 semi-norm and L2 norm of the error are shown in Fig. 15 as
functions of the number of mesh elements. Metric tensor Madap leads to far more accurate results than the other three metric
tensors, which produce comparable results for the considered range of N. Moreover, Madap and MDMP+adap give the same
convergence rate, i.e., jehjH1ðXÞ ¼ OðN�0:5Þ and kehkL2ðXÞ ¼ OðN�1Þ, while Munif and MDMP result in a slower convergence rate,
jehjH1ðXÞ ¼ OðN�0:25Þ and kehkL2ðXÞ ¼ OðN�0:5Þ. This demonstrates the advantage of using adaptive meshes. Interestingly, the
results in [43] (Table 4) obtained with a slope-limited scheme for triangular meshes also show a similar slow convergence.
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Fig. 12. Example 5.2. The adaptive meshes obtained with various metric tensors.
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Fig. 13. Example 5.2. Contours of the finite element solutions obtained with different metric tensors.
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It should be pointed out that the above results have been obtained when the interface (x = 0.5) is not predefined in the
mesh. If the interface is predefined in the mesh, then the solution (69) can be approximated accurately in the linear finite
element space. As shown in Fig. 16, all metric tensors produce comparable solutions and the same convergence rate
jehjH1ðXÞ ¼ OðN�0:5Þ and kehkL2ðXÞ ¼ OðN�1Þ.
6. Conclusions and comments

In the previous sections, we have developed a mesh condition (24) under which the linear finite element approximation
of anisotropic diffusion problem (1) and (2) validates the discrete counterpart of the maximum principle satisfied by the con-
tinuous problem. The condition is a generalization of the well known non-obtuse angle condition developed for isotropic
diffusion problems and requires that the dihedral angles of mesh elements measured in a metric depending only on the dif-
fusion matrix be non-obtuse.

We have also developed two variants of the anisotropic non-obtuse angle condition, (33) and (34), which can be more
convenient to use in actual mesh generation. Indeed, metric tensor (39) for use in anisotropic mesh generation is derived
based on (34) for accounting for DMP satisfaction. Moreover, an optimal metric tensor (55) accounting for both DMP satis-
faction and mesh adaptation is obtained from (34) by minimizing an interpolation error bound. Features of these metric ten-
sors are illustrated in numerical examples.

It is worth pointing out that condition (24) has been derived based on the local stiffness matrix on a mesh element. Like
the non-obtuse angle condition for isotropic diffusion problems, (24) may be relaxed by considering the global stiffness



Fig. 14. Example 5.3. Numerical solutions and meshes obtained with three metric tensors.
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matrix as a whole [49]. Moreover, we have restricted our attention to linear PDE (1) and Dirichlet boundary condition (2). But
the procedure developed in this work can be extended to problems with nonlinear diffusion D ¼ Dðx;u;ruÞ and mixed
boundary conditions (e.g., see [36–38,44]) without major modification.



Fig. 15. Example 5.3. The H1 semi-norm and L2 norm of solution error are shown as functions of the number of elements for metric tensors Munif, Madap,
MDMP, and MDMP+adap.

Fig. 16. Example 5.3. The H1 semi-norm and L2 norm of solution error are shown as functions of the number of elements for metric tensors Munif, Madap,
MDMP, and MDMP+adap. The interface (x = 0.5) is predefined in the mesh.
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Although the numerical examples have been presented in 2D, the anisotropic non-obtuse angle condition (24) and the
corresponding metric tensor formulas (39) and (55), and (62) are d-dimensional (d = 1,2,3). In 3D, a Delaunay triangulation
may not guarantee the satisfaction of DMP [49]. Nevertheless, some polyhedrons can be decomposed into tetrahedra satis-
fying the non-obtuse angle condition (30) and therefore the numerical solution satisfies DMP; e.g., see [44]. It is expected
that this will also work for the anisotropic non-obtuse angle condition (24) for a given metric tensor M. On the other hand,
the existence of the decomposition of an arbitrary polyhedron into non-obtuse tetrahedra is an open problem [44]. It is also
unclear if a 3D triangulation can be generated to (approximately) satisfy the M-uniform mesh conditions (35) and (36) for a
given M = M(x). Those are interesting topics to investigate in the future.
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[38] J. Karátson, S. Korotov, M. Křížek, On discrete maximum principles for nonlinear elliptic problems, Math. Comput. Simulat. 76 (2007) 99–108.
[39] D.A. Karras, G.B. Mertzios, New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes,

Meas. Sci. Technol. 20 (2009) 104012.
[40] P. Knupp, L. Margolin, M. Shashkov, Reference jacobian optimization-based rezone strategies for arbitrary lagrangian eulerian methods, J. Comput.

Phys. 176 (2002) 93–128.
[41] P.M. Knupp, Jacobian-weighted elliptic grid generation, SIAM J. Sci. Comput. 17 (1996) 1475–1490.
[42] R. Kornhuber, R. Roitzsch, On adaptive grid refinement in the presence of internal or boundary layers, IMPACT Comput. Sci. Eng. 2 (1990) 40–72.
[43] D. Kuzmin, M.J. Shashkov, D. Svyatskiy, A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion

problems, J. Comput. Phys. 228 (2009) 3448–3463.
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